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1. Introduction

There has recently been renewed interest in supersymmetric three-dimensional conformal

field theories in the context of the AdS/CFT correspondence [1]. The reasons for this

interest are diverse. One motivation is that three-dimensional CFTs describe the low-

energy world-volume theory of coincident M2-branes. Until recently, the understanding

of these theories had been rather rudimentary. However, a breakthrough was made in

the work of [2], where an N = 8 supersymmetric Chern-Simons theory was constructed.

The authors of [2] proposed that this theory is related to the theory on coincident M2-

branes. A careful study of the vacuum moduli space [3] subsequently led to a more precise

interpretation of this theory as describing two M2-branes at an R
8/Z2 orbifold singularity.

A number of papers have further studied the proposal of [2], culminating in the results of [4]

(ABJM). In the latter reference, the theory of [2] was recast in terms of an SU(2)× SU(2)

Chern-Simons quiver gauge theory, which allowed for a generalisation1 of the construction

to an arbitrary number N of M2-branes, with Chern-Simons level k. The authors of [4]

also discussed the gravity duals of these theories, showing that they are AdS4 × S7/Zk

1More precisely, in this generalisation the gauge group is taken to be U(N) × U(N).
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backgrounds of M-theory, with N units of four-form flux. These works open the way for a

systematic study of AdS4 M-theory backgrounds in terms of three-dimensional conformal

field theories, using the AdS/CFT correspondence.

The analogous problems in the context of type IIB string theory are understood rather

well. In this case the gauge theories arise as the low-energy limit of D3-brane world-volume

theories. The maximally supersymmetric case is the N = 4 SYM theory. One can obtain

N = 1 SCFTs by placing the D3-branes at a Calabi-Yau singularity. In the case of orbifolds

or toric singularities the technology to construct these gauge theories is now standard. The

gravity duals of these theories are type IIB AdS5 × Y5 backgrounds, where Y5 is a Sasaki-

Einstein five-manifold [5 – 8] (or orbifold) with N units of five-form flux. For some time an

obstacle in the study of AdS5/CFT4 duals was the lack of examples — specifically, there

existed only two (non-orbifold) examples where the metric was known explicitly, namely

S5 and T 1,1. The discovery of the Y p,q Sasaki-Einstein 5-manifolds in [9, 10] radically

improved this situation.

In dimension seven, the classification of manifolds Y7, not locally isometric to S7, ad-

mitting Killing spinors falls into 3 types: weak G2 manifolds, Sasaki-Einstein manifolds,

and tri-Sasakian manifolds. These admit 1, 2 and 3 Killing spinors, respectively. The

Killing spinor equation immediately implies that the metric is Einstein with positive Ricci

curvature, and that AdS4×Y7, with N units of four-form flux, is a supersymmetric solution

to eleven-dimensional supergravity. The AdS/CFT dual theories then have N = 1, 2 and

3 supersymmetry, respectively. The metric cones dr2 + r2ds27 are Ricci-flat and are corre-

spondingly Spin(7), Calabi-Yau and hyper-Kähler cones, respectively. We note that toric

tri-Sasakian manifolds are extremely well-studied — see, for example, [11]. In particular,

the Einstein metric on a toric tri-Sasakian manifold is the induced metric one obtains from

a hyper-Kähler quotient construction.

In this paper we focus on Sasaki-Einstein manifolds that are not tri-Sasakian. In dimen-

sion seven, the list of known explicit Sasaki-Einstein manifolds in the literature, before [12],

consisted of the following: M3,2, Q1,1,1 and V5,2. For a review of these manifolds see, for

example, [13]. The manifolds M3,2 and Q1,1,1 are natural generalisations of T 1,1 in dimen-

sion five. In particular, the corresponding Calabi-Yau cones are toric. Proposals for the

AdS/CFT duals of these homogeneous Sasaki-Einstein seven-manifolds were given in [14 –

16]. In [12] the construction of [9, 10] was generalised to arbitrary dimension, thus providing

infinite families of Sasaki-Einstein manifolds in all odd dimensions. The main result of [12]

shows that for any positive curvature Kähler-Einstein manifold B2n there is a countably

infinite class of associated Sasaki-Einstein manifolds Y2n+3(B2n).2 Here we will analyse two

families in seven dimensions, where B4 is either CP 2 or CP 1×CP 1. The seven-dimensional

Sasaki-Einstein manifolds will be denoted Y p,k(CP 2) and Y p,k(CP 1 × CP 1), respectively.

Following [18], we will give a presentation of the Calabi-Yau cones in terms of a Kähler

quotient, also known as a gauged linear sigma model description [19]. In fact, note that the

results of this analysis were anticipated in [18] (see the introduction of the latter reference).

2This construction has been subsequently generalised in [17] to the case where B2n is a product of

Kähler-Einstein manifolds.
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The description of the toric Calabi-Yau cones associated to the Y p,q metrics, presented

in [18], gave important clues that aided the identification of the dual gauge theories. In

particular, the Calabi-Yau singularity is (part of) the moduli space of supersymmetric

vacua of these gauge theories. It was also observed that the family of Y p,q singularities

interpolates between two limiting cases: C
3/Z2p and a Zp orbifold of the conifold. For these

the gauge theories are simple orbifolds of the N = 4 SYM and Klebanov-Witten theories,

respectively. The geometric information in [18] was then used in [20] (see also [21]) to

identify the general family of quiver gauge theories. Moduli spaces of orbifolds of the

ABJM theory are currently under investigation [22 – 25]. Thus, the results presented here

should be useful for identifying the N = 2 conformal field theory duals to the families of

AdS4 × Y p,k
7 backgrounds [12].

In the regime of parameters where p5 ≫ N ≫ p, the backgrounds that we discuss are

better described as type IIA solutions of the form AdS4 ×M6, with non-trivial dilaton, F4

and F2 RR fluxes. The non-trivial dilaton comes from the norm of the Killing vector along

which we reduce, and is naturally dictated by the construction of the metrics in [12]. The

reduction preserves the N = 2 supersymmetries. In particular, this is a different reduction

to that considered in [4].

The rest of the paper is organised as follows. In section 2 we review the Sasaki-Einstein

metrics presented in [12], and for the cases of interest determine explicitly their dependence

on the two integers p and k. In section 3 we compute the toric data of the Y p,k(CP 2) and

Y p,k(CP 1×CP 1) Calabi-Yau four-folds. We present the toric diagrams and GLSM charges.

In section 4 we compute the homology of the manifolds and discuss supersymmetric five-

submanifolds. In section 5 we discuss the AdS4 × Y p,k
7 M-theory backgrounds and their

reduction to type IIA supergravity. The limiting case AdS4 × Y p,3p(CP 2) is described in

some detail. We conclude in section 6.

2. Metrics and volumes

2.1 Review of the metrics of [12]

In this section we briefly recall the construction of the metrics of [12], and compute the

volumes of the corresponding manifolds. We initially keep the Kähler-Einstein manifold

(B2n, g̃) general, specialising to the two examples of interest, B4 = CP 2 and B4 = CP 1 ×
CP 1, only when it is necessary.

Take any complete 2n-dimensional positive curvature Kähler-Einstein manifold B2n,

with line element ds̃2 and Kähler form3 J̃ = dA/2. The metric is normalised so that

R̃ic = λg̃. Given any such B2n, there is a countably infinite family of associated Sasaki-

Einstein metrics on the total space of certain Lens space bundles S3/Zp over B2n. The

local metrics were presented in [12] in the following form

ds2 = ρ2ds̃2 + U(ρ)−1dρ2 + q(ρ)(dψ +A)2 +w(ρ) [dα+ f(ρ)(dψ +A)]2 (2.1)

3Note that the one-form A is only defined locally. In fact A is a connection on the anti-canonical line

bundle of B2n.
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where the function U(ρ) is conveniently written as

U(ρ) =
λ

2(n + 1)(n + 2)

1

xn+1
P (x;κ) , x =

Λ

λ
ρ2 (2.2)

and

P (x;κ) = −(n+ 1)xn+2 + (n + 2)xn+1 + κ . (2.3)

The remaining metric functions are then

w(ρ) = ρ2U(ρ) + (ρ2 − λ/Λ)2

q(ρ) =
λ2

Λ2

ρ2U(ρ)

w(ρ)

f(ρ) =
ρ2(U(ρ) + ρ2 − λ/Λ)

w(ρ)
. (2.4)

In [12] (see also [26]) it was shown that for

− 1 < κ < 0 (2.5)

one can take the ranges of the coordinates 0 ≤ ψ ≤ 4π/λ and ρ1 ≤ ρ ≤ ρ2 so that the “base”

M2n+2 (excluding the α direction in (2.1)) is the total space of an S2 bundle over B2n. In

particular, ρi are the two positive roots of the equation U(ρ) = 0 and satisfy the inequalities

0 < ρ1 <

√
λ

Λ
< ρ2 <

√
λ(n+ 2)

Λ(n+ 1)
. (2.6)

The S2 fibre is then coordinatised by the polar coordinate ρ and the axial coordinate ψ.

Without loss of generality we now set λ = 2 and Λ = 2(n+ 2), so that the Sasaki-Einstein

metric has Ricci curvature 2n + 2 times the metric.

For appropriate values of κ in the above range, one can periodically identify the α

coordinate so as to obtain a principal U(1) bundle over the space M2n+2. Recall that the

group H2(M2n+2; Z) of two-cycles on M2n+2 is naturally Z ⊕ H2(B2n; Z) where the first

factor is generated by a copy Σ of the fibre S2, and the generators Σi of H2(B2n; Z) are

pushed forward into M2n+2 by the map σN : B2n → M2n+2, which denotes the section of

π : M2n+2 → B2n corresponding to the “north pole” ρ = ρ2 of the S2 fibres. One can

then periodically identify α to obtain a principal U(1) bundle over M2n+2 provided B ≡
f(ρ)(dψ+A) is proportional to a connection one-form. This is true if and only if the periods

of 1
2πdB over the representative basis {Σ, σNΣi} are rationally related. Equivalently, one

ensures that the periods of ℓ−1

2π dB are all integers, for some positive constant ℓ ∈ R.

The periods are easily computed4 to be

f(ρ2) − f(ρ1) =

∫

Σ

dB

2π
≡ ℓp (2.7)

f(ρ2)c(i) =

∫

σNΣi

dB

2π
≡ ℓ

k

h
c(i) , (2.8)

4The definitions here are slightly different to those in [12].
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where

c(i) =

∫

Σi

dA

2π
= 〈c1(L), [Σi]〉 ∈ Z (2.9)

are Chern numbers of the anti-canonical bundle5 L over B2n and we have defined h =

hcf{c(i)}. Thus we see that, if f(ρ1)/f(ρ2) is rational and hence p, k ∈ Z, α can be

periodically identified with period 2πℓ. The U(1) principal bundle, with coordinate γℓ ≡ α,

then has Chern numbers {p, kc(i)/h} with respect to the basis {Σ, σNΣi}. The range of k

is fixed so that
hp

2
< k < hp , (2.10)

as follows from the bound (2.5) on κ.

Note that the resulting Sasaki-Einstein manifold is indeed a Lens space bundle S3/Zp

over B2n — this follows since the Chern number of the U(1) principal bundle over the fibre

S2 is p, which thus forms a Lens space fibre. We will see later that these Chern numbers

may be re-interpreted as units of RR fluxes in a dual type IIA picture. For further details

on the construction of [12], see also [26].

2.2 Volumes

We now turn to an analysis of the volumes of these manifolds. First, it will be useful to

note the following formulae

f(ρi) =
ρ2

i

ρ2
i − 1

n+2

, (2.11)

where ρ1, ρ2 are roots of the (n+2)-order polynomial. One also easily derives the following

relations

hρ2
1 = (k − hp)ℓ

(
ρ2
1 −

1

n+ 2

)
, hρ2

2 = kℓ

(
ρ2
2 −

1

n+ 2

)
. (2.12)

Defining xi = (n+ 2)ρ2
i , the integrated volume may be written as

vol(Y p,k
2n+3(B2n)) = vol(B2n)

2π2

(n + 1)(n + 2)n+2
ℓ(xn+1

2 − xn+1
1 ) (2.13)

where

ℓ =
x2 − x1

p(x2 − 1)(1 − x1)
. (2.14)

It is interesting to compute the formal limiting values of the volume formula (2.13) in the

limit that k approaches the endpoints of the interval (2.10). The case k → hp corresponds

to κ→ 0. It follows that ℓ→ n+2
p , and the volume approaches

vol(Y p,k
2n+3)

k→hp−→ vol(B2n)
2π2

p (n + 1)n+2
. (2.15)

5Note, in particular, that for B4 = CP 2, this is L = O(3)CP2 .
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The case k → hp/2 corresponds to κ → −1. The limiting value of the volume is easily

computed to be

vol(Y p,k
2n+3)

k→hp/2−→ vol(B2n)
8π2

p (n + 2)n+2
. (2.16)

Notice that in both cases the volumes are rational multiples of the volume of the round

sphere S2n+3. For n = 1, from (2.15) and (2.16) we correctly obtain6 the values π3

2p and
16π3

27p , respectively [18]. To be more explicit one should determine the roots xi in terms of

the integer parameters p, k. To this end, let us define the polynomial

Z(x1, x2) =
n∑

i=0

xi
1x

n−i
2 . (2.17)

The defining equation of the roots xi is then generally

(n+ 1)Zn+1(x1, x2) = (n+ 2)Zn(x1, x2) . (2.18)

This is an (n + 1)-th order equation in the two variables x1, x2. To determine the roots

we combine (2.18) with another relation that may be obtained by eliminating ℓ from the

equations (2.7), (2.8) defining the periods. This yields

x1(x2 − 1)

x2(x1 − 1)
= 1 − hp

k
. (2.19)

After solving for one of the roots and substituting back into (2.18), one obtains the final

equation from which the roots may be extracted. In the case n = 1 one can check that the

quadratic equation in [10] is reproduced. For our purposes, it suffices to analyse the case

of n = 2. We obtain cubic equations defining the two roots:

3p3 x3
1+2p2(6b−5p)x2

1+p(18b2−28pb+11p2)x1+4(3b3+4p2b−6pb2−p3) = 0

3p3 x3
2 + 2p2(p− 6b)x2

2 + p(18b2 − 8pb+ p2)x2 + 4b(3pb − 3b2 − p2) = 0 , (2.20)

where we have defined b = k/h. These may be solved analytically, although the resulting

expressions are lengthy. However, it is interesting to note that the volumes are written in

terms of cubic irrational numbers.

Note that for B4 = CP 2, the first non-trivial example has p = 1, k = 2. In this case

one easily computes

x1 =
1

9

[
2 +

(
53 + 6

√
78

)1/3
+

1
(
53 + 6

√
78

)1/3

]
≈ 0.77 (2.21)

x2 =
1

9

[
6 +

(
27 + 3

√
78

)1/3
+

3
(
27 + 3

√
78

)1/3

]
≈ 1.17 , (2.22)

6Note that the volume of the Kähler-Einstein base B2n is normalised so that gRic = 2g̃.
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giving the volume formula

vol
(
Y 1,2

7 (CP 2)
)

=
3π4

64

[
107

27
+

(
521

54
−

√
78

) (
53 + 6

√
78

)1/3

+

(
2341

54
− 44

9

√
78

)(
53 + 6

√
78

)2/3
]
. (2.23)

It would be nice to reproduce these numbers from a field theory calculation.

3. Toric description

Provided the base Kähler-Einstein manifold (B2n, g̃) is toric, the Calabi-Yau cones in two

complex dimensions higher are also toric. One can analyse these explicitly following the

techniques described in [18] for the case of n = 1. The general idea is simple. The Calabi-

Yau cones

ds2(CY2n+4) = dr2 + r2ds2(Y2n+3) (3.1)

have a Hamiltonian torus action by T
n+2, and so by definition are toric. Here the Kähler

form ω of the Calabi-Yau may be regarded as a symplectic form, and one can then introduce

a moment map µ : C(Y2n+3) → R
n+2. The image is always a convex rational polyhedral

cone, of a special type, and the moment map exhibits the Calabi-Yau as a T
n+2 fibration

over this polyhedral cone. Writing the symplectic form of B2n as

J̃ = dφi ∧ dµi
B2n

, (3.2)

the symplectic form of the Calabi-Yau cones may be written as

ω = dφi ∧ d
[
r2ρ2µi

B2n

]
+ dψ ∧ d

[
− 1

2
r2ρ2

]
+ dγ ∧

[
ℓ

2
r2

(
1

n+ 2
− ρ2

)]
. (3.3)

From this it is fairly immediate to read off the moment map. However, a remaining problem

is to determine a choice of angular coordinates, and correspondingly the choice of moment

map coordinates, such that the associated vector fields generate an effectively acting T
n+2.

This coordinate basis will be unique up to SL(4;Z). In the remainder of this section we

compute the toric and linear sigma model descriptions of Y p,k(CP 2) and Y p,k(CP 1×CP 1)

using the techniques described in [18], to which we refer for further details. For the time

being we assume hcf(p, k) = 1.

3.1 Y p,k(CP 2) family

Recall that CP 2 equipped with its Fubini-Study metric is a toric Kähler-Einstein manifold.

In terms of homogeneous coordinates the torus action is

[z0, z1, z2] → [z0, exp(iφ1)z1, exp(iφ2)z2] (3.4)

which has moment map µFS : CP 2 → R
2 given by

µFS = −3

2

( |z1|2
|z0|2 + |z1|2 + |z2|2

,
|z2|2

|z0|2 + |z1|2 + |z2|2
)
. (3.5)

– 7 –
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Here we have normalised the metric so that Ric = 2gFS. As is well-known, the image in R
2

is a triangle with vertices (0, 0), (−3/2, 0), (0,−3/2). The canonical bundle over CP 2 has

Chern class −3, and hence h = 3. Note we may take

A = −2µi
FSdφi . (3.6)

The following is a basis for an effectively acting T
4 on Y p,k(CP 2):

e1 =
∂

∂φ1
− ∂

∂ψ
+
k

3

∂

∂γ
, e2 =

∂

∂φ2
− ∂

∂ψ
+
k

3

∂

∂γ
, e3 =

∂

∂ψ
− k

3

∂

∂γ
, e4 =

∂

∂γ
. (3.7)

The appearance of the fractional terms k/3 is crucial in order that the orbits of the group

action close, giving an effective action of the torus on the Calabi-Yau cone. This issue

was discussed in [18], and there is a straightforward way to fix a good basis of angular

coordinates. Consider, for example, the fixed complex ray C
∗ given by {z1 = z2 = 0, ρ =

ρ2}. The induced metric is

dr2 + r2ℓ2w(ρ2)

(
dγ +

k

3
dψ

)2

. (3.8)

Thus we define the new coordinates

φ3 = ψ, φ4 = γ +
k

3
ψ , (3.9)

and note that φ4 is a periodic coordinate on the C
∗, and that φ1, φ2 and φ3 coordinatise

the T3 that fixes this line. Thus φa, a = 1, . . . , 4, may be taken to be standard coordinates

on T
4. Note that

∂

∂φ3
=

∂

∂ψ
− k

3

∂

∂γ
,

∂

∂φ4
=

∂

∂γ
. (3.10)

This basis is unique only up to SL(4; Z) transformations. For example, one easily checks

that the natural induced bases at the other rays are equivalent to the one above. In (3.7)

we have chosen a slightly different, but particularly convenient, basis. The moment map

in this basis is then

µ = r2
[
ρ2µ1

FS +
1

2
ρ2 − 1

6
kℓ

(
ρ2 − 1

4

)
, ρ2µ2

FS +
1

2
ρ2 − 1

6
kℓ

(
ρ2 − 1

4

)
,

−1

2
ρ2 +

1

6
kℓ

(
ρ2 − 1

4

)
,−1

2
ℓ

(
ρ2 − 1

4

)]
. (3.11)

This is easily computed using the Kähler form (3.3) of the Calabi-Yau cone.

We now identify the half-lines which form the polyhedral cone. These are submanifolds

of Y7 over which a T
3 collapses. They are precisely the collection of 6 circles given by the

vanishing of all but one of the 3 homogeneous coordinates on CP 2, together with ρ = ρ1, ρ2.

Noting that ρ2
1− 1

n+2 < 0 and ρ2
2− 1

n+2 > 0, these half-lines are spanned by the vectors in R
4:

u1 = [p, p,−p, 1] , u2 = [−2p+ k, p,−p, 1] , u3 = [p,−2p+ k,−p, 1] ,
u4 = [0, 0, 0,−1] , u5 = [−k, 0, 0,−1] , u6 = [0,−k, 0,−1] ,

(3.12)

– 8 –
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where the first 3 vectors correspond to ρ = ρ1 and the remaining 3 correspond to ρ = ρ2.

These vectors form a convex rational polyhedral cone, and it is simple to compute the

outward pointing primitive normal vectors to the facets of this cone. There are 5 facets

with normal vectors

v1 = [0, 0, 1, 0], v2 = [0, 0, 1, p], v3 = [1, 0, 1, 0], v4 = [0, 1, 1, 0], v5 = [−1,−1, 1, k] . (3.13)

As in [18], it will be useful to obtain a gauged linear sigma model description of the

geometry. Here, in order to keep the paper relatively self-contained, we give a light-

ning review of gauged linear sigma models and Delzant’s theorem [27], referring to [18]

for further details. Let z1, . . . , zd denote complex coordinates on C
d. In physics terms,

these will be the lowest components of chiral superfields Φi, i = 1, . . . , d. We may

specify an action of the group T
r ∼= U(1)r on C

d by giving the integral charge matrix

Q = {Qi
a | i = 1, . . . , d; a = 1, . . . , r}; here the ath copy of U(1) acts on C

d as

(z1, . . . , zd) → (λQ1
az1, . . . , λ

Qd
azd) (3.14)

where λ ∈ U(1). We may then perform the so-called Kähler quotient X = C
d//U(1)r by

imposing the r constraints

d∑

i=1

Qi
a|zi|2 = ta a = 1, . . . , r , (3.15)

where ta are constants, and then quotienting by U(1)r. The resulting space X has complex

dimension m = d− r and inherits a Kähler, and hence also symplectic, structure from that

of C
d. In physics terms, the constraints (3.15) correspond to setting the D-terms of the

gauged linear sigma model to zero to give the vacuum, where ta are FI parameters. The

quotient by T
r then removes the gauge degrees of freedom. Thus the Kähler quotient of

the gauged linear sigma model precisely describes the classical vacuum of the theory. For

the cases of interest in this paper, we set ta = 0 so that the resulting quotient space is a

cone. It is also an important fact that c1(X) = 0 is equivalent to the statement that the

sum of the U(1) charges is zero for each U(1) factor. Thus

d∑

i=1

Qi
a = 0 a = 1, . . . , r . (3.16)

The sigma model is then Calabi-Yau, although note that the metric induced by the Kähler

quotient is not in general Ricci-flat.

In order to go from the moment map description to the gauged linear sigma model

description above, one can apply the Delzant theorem of [27]. We begin by considering the

linear map π : R
d → R

m which maps the standard basis vectors Ei of R
d to the outward

normal vectors vi of the moment polytope. Thus π(Ei) = vi for each i = 1, . . . , d. Moreover,

since the map maps lattice vectors to lattice vectors, one also obtains an induced map of tori

π̃ : T
d → T

m . (3.17)
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Figure 1: Toric diagram for Y p,k(CP 2). The polytope is bounded by 6 triangular faces.

The Delzant theorem is that the gauged linear sigma model gauge group is the kernel of

the map π̃. Note this may contain discrete factors, so that the kernel is not connected.

This will occur, for example, for the orbifold C
4/Z3p discussed below.

In the case at hand, we must compute the kernel of the map

R
5 → R

4 : Ea 7→ va . (3.18)

Thus d = 5, m = 4, in the above notation. The kernel is generated by the primitive vector

in the integral lattice Z
5 given by

(−3p+ k,−k, p, p, p) . (3.19)

These are thus the charges of the gauged linear sigma model.

Note that the vectors (3.13) are coplanar, all lying on the plane {E3 = 1}. This is

a result of the Calabi-Yau condition. We may hence represent the toric data as a set of

vectors in Z
3:

w1 = [0, 0, 0], w2 = [0, 0, p], w3 = [1, 0, 0], w4 = [0, 1, 0], w5 = [−1,−1, k] . (3.20)

It is a general result that these vectors form the vertices of a compact convex lattice poly-

tope in Z
3 ⊂ R

3. The corresponding diagram is usually called the toric diagram in the

physics literature. The polytope for Y p,k(CP 2) is shown in figure 1.

This information allows for a simple identification of the limits k = 3p and 2k = 3p.

In the former case one can show that the vector w2 lies on the plane defined by w3, w4, w5.

We may hence discard this vector to give a minimal presentation of the singularity. Thus

this limit is necessarily an orbifold of C
4. Using the Delzant theorem one easily finds the

orbifold action is generated by

(ω3p, ω3p, ω3p, ω
−3
3p ) ∈ SU(4) (3.21)

where ω3p is a 3p-th root of unity. We thus obtain the orbifold C
4/Z3p = (C4/Z3)/Zp. The

toric diagram is shown in figure 2. We shall return to consider this orbifold in more detail

later.
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Figure 2: On the left hand side: Toric diagram for the orbifold Y p,3p(CP 2) = C4/Z3p. The

polytope is bounded by 4 triangular faces. On the right hand side: Toric diagram for Y 2r,3r(CP 2) =

M3,2/Zr.

The limit 2k = 3p clearly requires p = 2r even. One then has a Zr orbifold of the

gauged linear sigma model with charges

(−3,−3, 2, 2, 2) . (3.22)

In fact this is just the complex cone over CP 2 × CP 1. The Sasaki-Einstein metric is

the homogeneous metric known as M3,2. The finite quotient is given by Zr ⊂ SU(2)

which acts on the CP 1, thus breaking the isometry group to SU(3) × U(1)2 which is the

isometry group of the general Y p,k(CP 2) manifold. The toric diagram is shown in figure 2.

Equations7 (2.15) and (2.16) show that the volume of a generic Y p,k(CP 2) lies within the

following range

9π4

128r
= vol(M3,2/Zr) > vol(Y p,k(CP 2)) > vol(S7/Z3p) =

π4

9p
(3.23)

where the volume8 of M3,2 is easily computed using the topological formula

vol(M3,2) =
π4

768

∫

CP 2×CP 1

c31 . (3.24)

It is interesting to notice that, at fixed p, the volume is a monotonically decreasing function

of k in the range (3.23).

3.2 Y p,k(CP 1 × CP 1) family

Since the canonical bundle over CP 1 ×CP 1 has both Chern numbers equal to −2, we have

h = 2. The following is a basis for an effectively acting T
4 on Y p,k(CP 1 × CP 2):

e1 =
∂

∂φ1
− k

2

∂

∂γ
, e2 =

∂

∂φ2
− k

2

∂

∂γ
, e3 =

∂

∂ψ
− k

2

∂

∂γ
, e4 =

∂

∂γ
. (3.25)

7Recall that, in our normalisation for the Kähler-Einstein base, vol(CP 2) = 9π2/2.
8This volume was also computed in [15].
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Here φj, j = 1, 2, are azimuthal coordinates on the two copies of CP 1, respectively. The

argument that leads to the basis (3.25) is similar to that in the previous subsection. The

moment map in this basis is

µ = r2
[
1

2
ρ2 cos θ1 +

1

4
kℓ

(
ρ2 − 1

4

)
,
1

2
ρ2 cos θ2 +

1

4
kℓ

(
ρ2 − 1

4

)
,

−1

2
ρ2 +

1

4
kℓ

(
ρ2 − 1

4

)
,−1

2
ℓ

(
ρ2 − 1

4

)]
. (3.26)

Here θ1, θ2 are usual polar coordinates on the two two-spheres.

We now identify the half-lines which form the polyhedral cone. These are precisely the

collection of 8 circles given by all 23 combinations of θ1 = 0, π; θ2 = 0, π; ρ = ρ1, ρ2. These

half-lines are spanned by the following vectors in R
4:

u1 = [−k + p,−k + p,−p, 1], u2 = [−k + p,−p,−p, 1],
u3 = [−p,−k + p,−p, 1], u4 = [−p,−p,−p, 1], u5 = [k, k, 0,−1],

u6 = [k, 0, 0,−1], u7 = [0, k, 0,−1], u8 = [0, 0, 0,−1] ,

where the first 4 vectors correspond to ρ = ρ1 and the remaining 4 correspond to ρ = ρ2.

There are 6 facets for this polyhedral cone with normal vectors

v1 = [0, 0, 1, 0], v2 = [0, 0, 1, p], v3 = [−1, 0, 1, 0],

v4 = [1, 0, 1, k], v5 = [0,−1, 1, 0], v6 = [0, 1, 1, k] .
(3.27)

Each of these vectors has zero dot products with precisely four of the ui and has negative

dot products with the remaining four.

We may now apply the Delzant theorem of [27]. Thus we compute the kernel of the map

R
6 → R

4 : Ea 7→ va (3.28)

where Ea, a = 1, . . . , 6 is the standard orthonormal basis for R
6. This kernel is generated

by the primitive vectors in the lattice Z
6

(−2p+ k,−k, p, p, 0, 0)
(−2p+ k,−k, 0, 0, p, p) (3.29)

which give the charges of the gauged linear sigma model. Again note that the vectors (3.27)

lie on the plane {E3 = 1} and thus we may project onto this plane to obtain

w1 = [0, 0, 0], w2 = [0, 0, p], w3 = [−1, 0, 0],

w4 = [1, 0, k], w5 = [0,−1, 0], w6 = [0, 1, k] .
(3.30)

The corresponding toric diagram for Y p,k(CP 1 × CP 1) is shown in figure 3.

We now identify the limits k = 2p, k = p. The former is a Zp quotient of the gauged

linear sigma model with charges

(0,−2, 1, 1, 0, 0)

(0,−2, 0, 0, 1, 1) . (3.31)
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Figure 3: Toric diagram for Y p,k(CP 1 × CP 1). The polytope is bounded by 8 triangular faces.

Figure 4: On the left hand side: Toric diagram for Y p,2p(CP 1 × CP 1). This is bounded by 4

triangles and a parallelogram, implying that the link of the singularity has worse-than-orbifold

singularities. On the right hand side: Toric diagram for Y p,p(CP 1 × CP 1) = Q1,1,1/Zp.

In fact this describes C×CC(CP 1×CP 1), where CC(CP 1×CP 1) denotes the complex cone

over CP 1 × CP 1. Thus the boundary of this space has worse-than-orbifold singularities.9

One can also see this from the toric diagram, shown in figure 4. For general p and k, the

vertices w3, w5, w4, w6 form a parallelogram with edge vectors (1, 1, k) and (1,−1, 0). When

k = 2p, the vertex w2 = (0, 0, p) lies in this parallelogram. Thus the parallelogram itself

becomes a bounding face of the polytope; the fact that this is not a triangle implies that one

has worse-than-orbifold singularities on the link of the singularity at the apex of the cone.

The limit k = p is instead a Zp quotient of the gauged linear sigma model with charges

(−1,−1, 1, 1, 0, 0)

(−1,−1, 0, 0, 1, 1) . (3.32)

This space is the circle bundle over CP 1 × CP 1 × CP 1 with Chern numbers 1 over each

9The complex cone over CP 2 is an orbifold, which is why projective spaces are exceptional in this limit.
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CP 1, and the corresponding homogeneous Sasaki-Einstein manifold is known as Q1,1,1.

The finite quotient is given by Zp ⊂ SU(2) in the first CP 1 which thus breaks the isometry

group to SU(2)×SU(2)×U(1)2. This is the isometry group of the general Y p,k(CP 1×CP 1)

manifold. The toric diagram is shown in figure 4. Using equations (2.15) and (2.16), we

find that the volume of Y p,k(CP 1 × CP 1) lies within the following range

π4

8p
= vol(Q1,1,1/Zp) > vol(Y p,k(CP 1 × CP 1)) > vol(∂L/Zp) =

8π4

81p
, (3.33)

where the volume of Q1,1,1 is easily computed using a topological formula similar to (3.24),

and is also given for instance in [15]. Again, at fixed p, the volume is a monotonically

decreasing function of k in the range (3.33).

4. Homology and supersymmetric submanifolds

4.1 Homology

In this subsection we make some comments on the homology of Y = Y p,k(B2n). We begin

by keeping B2n general, specialising to the two cases of interest only when it is necessary.

Since for (p, k) ≡ hcf(p, k) = 1 the Chern numbers of the α circle bundle are relatively

prime, it follows that Y is simply-connected. More generally we have π1(Y
p,k) ∼= Z(p,k).

Using the Gysin sequence for the circle fibration, it is also easy to see that H2(Y ) ∼= Z
b2(B2n)

where b2(B2n) is the second Betti number of B2n. In fact these topological invariants are

also easily deduced from the toric data [28]. Specifically,

π1(Y ) ∼= Z
n+2/〈va〉 , π2(Y ) ∼= Z

d−(n+2) , (4.1)

where d is the number of normals {va}. Thus, in particular, the number of gauge groups

in the gauged linear sigma model is always given by b2(B2n).

The remaining homology groups are easily computed using the Gysin sequence of the

α circle bundle. The result for the two cases studied in this paper is

H0
∼= Z, H1

∼= Z(p,k), H2
∼= Z

b2(B2n), H3
∼= Γ,

H4
∼= 0, H5

∼= Z
b2(B2n) ⊕ Z(p,k), H6

∼= 0, H7
∼= Z .

(4.2)

Here the finite group Γ is

Γ ∼=
{

Z
2/〈(0,−3p + k), (k, p)〉

Z
3/〈(0,−2p + k,−2p+ k), (k, p, 0), (k, 0, p)〉 (4.3)

in the case B4 = CP 2 and B4 = CP 1 × CP 1, respectively. To derive these last results it is

useful to note that the cohomology ring of M6 is given by the polynomial ring

H∗(M6) ∼= H∗(B4)[z]/(z
2 − c1(L)z) (4.4)

where z generates the cohomology of the fibre S2. This follows since, topologically, M6

is the projectivisation of the bundle O ⊕ L → B2n. The cohomology ring of M6 is then

standard — see [29]. Then the Gysin sequence gives that

H4(Y7) ∼= H4(M6)/[c1 ∪H2(M6)] (4.5)
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where c1 = pz + (k/h)π∗c1(L) is the first Chern class of the α circle bundle.

We conclude by summarising the non-zero Betti numbers for the two cases of interest:

Y p,k(CP 2) : b0 = b7 = 1 , b2 = b5 = 1 .

Y p,k(CP 1 × CP 1) : b0 = b7 = 1 , b2 = b5 = 2 .
(4.6)

This implies that in the dual gauge theories one expects to find one or two global “baryonic”

U(1) symmetries, respectively.10 These are associated to massless gauge fields in AdS4,

coming from Kaluza-Klein reduction of the M-theory six-form (dual to the three-form)

on the internal five-cycles. In fact, the values above are also valid for the limiting cases

Y 2,3(CP 2) = M3,2 and Y 1,1(CP 1 × CP 1) = Q1,1,1 [15].

4.2 Supersymmetric submanifolds

We now discuss supersymmetric 5-submanifolds. By definition, one may wrap M5-branes

on these submanifolds and preserve supersymmetry. These should correspond to BPS

baryon-like operators in the dual SCFT3. In particular, the conformal dimensions (and

R-charges) of these operators are proportional to the corresponding volumes of the sub-

manifolds, and provide important checks on the conjectured dual field theories. Specifically,

the conformal dimension of such operators is given by [30]

∆ =
πN

6

vol(Σ5)

vol(Y7)
, (4.7)

where N denotes the number of M2 branes, and should also be related to the rank of the

gauge group in the dual CFT3.

These submanifolds are the bases of six-dimensional cones which are divisors in the

Calabi-Yau. The toric divisors are the inverse images under the moment map of the

facets of the polyhedral cone. However, here we will characterise the submaniolds using

specific features of the construction of [12]. As we reviewed in section 2, all Sasaki-Einstein

manifolds constructed in [12] arise as principal U(1)α bundles over certain manifoldsM2n+2,

which are themselves S2 bundles over Kähler-Einstein manifolds B2n. It is easy to show

(see [18]) that taking a section {ρ = ρi} of the S2 fibre and fibering with U(1)α gives rise

to two supersymmetric (2n + 1)-submanifolds Ξ1,Ξ2. The volumes of these are given by

vol(Ξi) = vol(B2n)2πℓ
xn

i

(n+ 2)n+1
|xi − 1| i = 1, 2 . (4.8)

For the n = 2 cases discussed in this paper it is also easy to determine their topology:

Y p,k(CP 2) :

{
Ξ1

∼= S5/Z3p−k

Ξ2
∼= S5/Zk

(4.9)

Y p,k(CP 1 × CP 1) :

{
Ξ1

∼= (S2 × S3)/Z2p−k

Ξ2
∼= (S2 × S3)/Zk

(4.10)

10Notice that, although S7 has no five-cycles, the ABJM quiver theory has a global “baryonic” symmetry.
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The finite quotients are along the fibres of the principal circle bundles S1 →֒ S5 → CP 2,

S1 →֒ T 1,1 → CP 1 × CP 1, respectively.

Now, if B2n is toric it will admit a number of (2n − 2)-dimensional toric divisors

{σi, i = 1, . . . g}. These lift to non-compact toric divisors on the Calabi-Yau (n + 2)-fold

whose boundaries are g additional supersymmetric (2n + 1)-submanifolds Θi of Y2n+3.

Their volumes are given by

vol(Θi) = vol(σi)
2π2

n(n+ 2)n+1
ℓ(xn

2 − xn
1 ) , i = 1, . . . , g . (4.11)

For B4 = CP 1 × CP 1, notice that these are in fact topologically four copies of Y p,q
5 ,

where k = p + q. For B4 = CP 2, the projection to M6 gives topologically three copies of

the third Hirzebruch surface F3 — that is, a CP 1 bundle over CP 1 with twist 3. In fact

this space is diffeomorphic to F1. F3 is not a spin manifold and, in fact, depending on p

and k, neither is the total space of the α circle bundle over this. Thus, in these cases, these

supersymmetric submanifolds are not spin. However, note that both D-branes and M5-

branes may still be wrapped supersymmetrically on non-spin manifolds.11 For reference,

we write down the volumes

Y p,k(CP 2) : vol(Θi) =
3π3ℓ

43
(x2

2 − x2
1) i = 1, 2, 3

Y p,k(CP 1 × CP 1) : vol(Θi) =
2π3ℓ

43
(x2

2 − x2
1) i = 1, . . . , 4 .

(4.12)

In general, the xi are cubic roots and the expressions for these volumes are rather

lengthy. However, it may be useful to record the values in the orbifold limits. We do this

for the case of Y p,k(CP 2). We have

Y p,3p(CP 2) : vol(Ξ2) = vol(Θi) =
π3

3p

Y 2r,3r(CP 2) : vol(Ξ1) = vol(Ξ2) =
9π3

64r
, vol(Θi) =

3π3

16r
.

Notice that in the case Y p,3p(CP 2) = S7/Z3p the volume of Ξ1 is formally zero. The fact

that one submanifold disappears in this limit may be also understood from the fact that

the number of external points in the toric diagram jumps from five to four, as discussed

around equation (3.20).

Notice that the volumes given above satisfy the relation

2∑

i=1

vol(Ξi) +

g∑

i=1

vol(Θi) =
12

π
vol(Y7) . (4.13)

In fact, this follows from specialising a general formula (cf. equation (2.88)) given in the

first reference in [36]. Using (4.7), with N = 1, this may be rewritten as

d∑

a=1

∆a = 2 . (4.14)

11Although this may introduce additional subtleties. For example, the Freed-Witten anomaly shifts the

periods of the world-volume gauge field to half-integer values on a non-spin manifold.

– 16 –



J
H
E
P
1
1
(
2
0
0
8
)
0
1
6

In the context of AdS5/CFT4 this formula is interpreted as the constraint that the R-

charges of the fields entering in a superpotential term sum to two [31], and it is natural to

give the same interpretation in the context of AdS4/CFT3 .

5. Supergravity solutions

We now turn to a discussion of the AdS4 × Y7 M-theory backgrounds and their reduction

to type IIA string theory. We then describe in more detail the orbifold S7/Z3p and its cone

C
4/Z3p.

5.1 M-theory and type IIA backgrounds

We use the notation of [32, 4]. The M-theory backgrounds of interest take the form

ds2 = R2

(
1

4
ds2(AdS4) + ds2(Y7)

)
,

G4 =
3

8
R3dvol(AdS4) , (5.1)

where the Einstein metrics on AdS4 and Y7 obey

RicAdS4
= 3 gAdS4

RicY7
= 6 gY7

, (5.2)

respectively. The radius R is determined by the quantisation of the G4 flux

N =
1

(2πlp)6

∫

Y7

∗G4 , (5.3)

where lp is the eleven-dimensional Planck length, given by

R6 =
(2πlp)

6N

6vol(Y7)
. (5.4)

Recall that Sasaki-Einstein metrics may be canonically written as

ds2(Y7) = ds2(B6) + (dϕ+ σ)2 , (5.5)

where ds2(B6) is in general only a local Kähler-Einstein metric (with RicB6
= 8 gB6

) and

dσ/2 = ωB6
is the corresponding Kähler two-form. When the Sasaki-Einstein manifold

Y7 is of (quasi-) regular type, meaning that B6 is a manifold (orbifold), one may then

quotient by the U(1) action generated by the Reeb vector field ∂ϕ. Thus, in these cases one

can reduce to type IIA supergravity along this particular direction. This is the reduction

discussed in [4] for the case of Y7 = S7, or more generally Y7 = S7/Zk. The Zk action

discussed by ABJM divides by a factor of k the periodicity of ϕ. The radius of the M-

theory circle is in this case Rϕ = R/k ∼ (N/k5)1/6, and thus the M-theory description

is valid for N ≫ k5 [4]. On the other hand, when N ≪ k5 the circle becomes small and
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one should pass to a type IIA description. The resulting type IIA supergravity solution

preserves N = 6 supersymmetry at the supergravity level [33], and gives the background

ds2st =
R3

k

(
1

4
ds2(AdS4) + ds2(CP 3)

)
, (5.6)

e2Φ =
R3

k3
, F4 =

3

8
R3dvol(AdS4) , F2 = 2k ωCP 3 , (5.7)

where the metric is in the string frame. There are then N units of F4 flux through AdS4,

and k units of F2 flux through the linearly embedded CP 1 ⊂ CP 3. Note here that, due

to the normalisation of the Kähler-Einstein metric on CP 3, the Ricci form of the latter is

given by ρ = 8ωCP 3 , and thus
∫

CP 1

ωCP 3

2π
=

1

8

∫

CP 1

c1(CP
3) =

1

2
. (5.8)

Here we have used the fact that the first Chern class of the tangent bundle of CP 3 is

equal to 4 times the hyperplane class. The radius of curvature of this background is R2
st =

R3/k ∼ (N/k)1/2, and thus the type IIA supergravity approximation is valid for N ≫ k [4].

One might consider performing a similar reduction of one of the homogeneous Sasaki-

Einstein manifolds to a solution of type IIA supergravity. However, because one starts

with N = 2 supersymmetry only, now all supersymmetries are broken in the reduction [33].

Moreover, for generic Y p,k
7 manifolds, there is no way to make sense of the quotient space,

even locally, as a manifold.

However, from the construction of [12] reviewed in section 2.1, we see that one may

consider a different reduction along the α-circle, obtaining perfectly smooth N = 2 su-

persymmetric12 type IIA backgrounds. These are warped products AdS4 ×M6, with RR

fields and a non-trivial dilaton. The manifolds M6 are S2 bundles over the Kähler-Einstein

manifold B4. In fact this bundle is obtained from the canonical bundle13 L over B4 by

replacing the C fibre by CP 1. Note that in [12] it was shown that M6 are always spin

manifolds. The topology of M6 was discussed earlier. To perform the reduction we write

ds2(Y7) = ds2(M6) + w(ρ)ℓ2(dγ + ℓ−1B)2, obtaining

ds2st =
√
w(ρ) ℓR3

(
1

4
ds2(AdS4) + ds2(M6)

)
(5.9)

e2Φ = ℓ3R3(w(ρ))3/2 F4 =
3

8
R3dvol(AdS4) F2 = ℓ−1dB , (5.10)

where w(ρ) = (1− 8ρ2/3 + κ/(48ρ4))/16 is a bounded function on M6. From section (2.1)

we find that the RR two-form flux has quantised periods, namely
∫

Σ

F2

2π
= p ,

∫

σN Σi

F2

2π
= k . (5.11)

12This follows since both Killing spinors of the Sasaki-Einstein seven-manifolds are invariant under this

U(1)α action. See e.g. [32] for an explicit calculation.
13However, one should note that the natural complex structure here is different from the one associated

to the Calabi-Yau cone.
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Here Σ ∼= S2, and σNΣi is either a copy of CP 1 ⊂ CP 2, or one of the two copies of

CP 1 ⊂ CP 1 × CP 1, in the two examples, respectively. Notice that κ ∼ 1, so w(ρ) is of

order 1 in p and k. The radius of the M-theory circle is

Rγ = ℓR ∼ ℓN1/6

vol(Y7)1/6
, (5.12)

and we should pass to a type IIA description when this is small. The radius of curvature

in the type IIA solution is

R2
st = ℓR3 ∼ ℓN1/2

vol(Y7)1/2
. (5.13)

Recall that vol(Y7) and ℓ are determined in terms of p and k through (2.13), (2.14), and the

range of k is constrained by the value of p. Thus, we can consider the limit p≫ 1, k ≫ 1, at

fixed p/k. Since xi ∼ 1, we have both ℓ ∼ 1/p, vol(Y7) ∼ 1/p, thus we obtain a behaviour

qualitatively similar to the orbifold case, reviewed above. In particular, the M-theory

description is valid when N ≫ p5, while type IIA supergravity is a good approximation in

the regime p5 ≫ N ≫ p.

5.2 The orbifolds S7/Z3p and C
4/Z3p

For the five-dimensional Y p,q manifolds, understanding the limiting case Y p,p = S5/Z2p

was a key step for constructing the complete family of quiver gauge theories [20]. We

hence now discuss in more detail the analogous case of the Y p,3p = C
4/Z3p orbifold.

In terms of standard complex coordinates on C
4, the orbifold action (3.21) is

(z1, z2, z3, z4) → (e
2πi
3p z1, e

2πi
3p z2, e

2πi
3p z3, e

− 2πi
p z4) . (5.14)

The orbifold therefore preserves N = 2 supersymmetry [22, 24]. We begin by noting that

after the following non-holomorphic change of coordinates

w1 = z1, w2 = z2, w3 = z3, w4 = z̄4 , (5.15)

the above orbifold acts as the 3p-th roots of unity Z3p ⊂ U(1) acting on C̃4 with weights

(1, 1, 1, 3). The quotient by the latter realises S7 as a U(1) orbi-bundle over the weighted

projective space WCP 3
[1,1,1,3]. For p = 1, one divides by Z3 along the fibre, resulting in the

solution AdS4 ×WCP 3
[1,1,1,3], with three units of of RR F2 flux through the CP 1 and one

unit of flux at a Z3 orbifold singularity — see (5.11). For general p these are replaced by

3p units and p units, respectively.

We may also understand this orbifold via the canonical Hopf fibration (5.5) of S7 over

CP 3. Note that the orbifold acts as a subgroup of SU(4) acting on C
4, which descends to

an action on CP 3 itself. For simplicity, we discuss the case p = 1 — the general p > 1 case

is a further Zp quotient of this geometry. The action is

(ω3, ω3, ω3, 1) . (5.16)
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On C
4 this fixes the complex line (0, 0, 0, z4). The action on the copy of C

3 given by

(z1, z2, z3, 0) is the usual diagonal Lens space action, with the Z3 ⊂ U(1) acting along the

Hopf fibre of S5 → CP 2. The action is thus free away from the origin. We now descend

to CP 3. We obtain in this way a U(1) bundle over CP 3/Z3. The orbifold action has fixed

points at a point and the linearly embedded CP 2. Indeed, where z4 6= 0 we may introduce

homogeneous coordinates

x1 =
z1
z4
, x2 =

z2
z4
, x3 =

z3
z4

. (5.17)

The Z3 action is simply the diagonal action, which thus has an isolated Z3 fixed point

{x1 = x2 = x3 = 0}. Similarly, the CP 2 at z4 = 0 is also fixed by the orbifold action. In

fact the orbifold action acts on the Hopf fibre over this CP 2, as mentioned above. Thus

the U(1) bundle restricted to CP 2 is O(−3).

The resulting orbifold of CP 3 may be viewed as follows. We begin by viewing CP 3 as

O(1)CP 2 glued to an open ball in C
3 — both have boundary S5. We may also think of this

as collapsing the boundary of O(1)CP 2 to a point p∞. This is the point {x1 = x2 = x3 = 0}
above. The Z3 action is along the fibre of O(1)CP 2 , which is also the Hopf fibre of the

S5. Thus we see explicitly that the CP 2 zero section and the point p∞ are fixed. We may

construct the same space by instead starting with O(3)CP 2 . The boundary is S5/Z3, which

collapsing to a point in the same way means that p∞ is now an isolated Z3 singularity.

Note that originally the CP 2 zero section was a fixed locus of the Z3 action. However,

C/Z3
∼= C, and thus the two spaces we have described are diffeomorphic, although not

equivalent as orbifolds.

The discussion in the above paragraph is precisely analogous to the discussion of the

orbifold S5/Z2 in [6]. Following the latter reference, we may thus ask what happens when

we blow up the isolated Z3 singularity at the point p∞. This results in the space

CP 1 ×U(1) O(3)CP 2 . (5.18)

This is a CP 1 bundle over CP 2, and in fact is precisely the base spaceM6 in the construction

of section 2. However, unlike [6], we cannot interpret this as the base of the homogeneous

space M3,2, since (5.18) is not diffeomorphic to CP 1 ×CP 2. This suggests that we cannot

view the M3,2 theory as the IR fixed point of a deformation of the orbifold S7/Z3, in the

same way that T 1,1 arises as a relevant deformation of S5/Z2 [6].

It is also clear in this description that the four supersymmetric 5-submanifolds are in

this case copies of S5/Z3p. Note that one of these is a smooth Lens space, with action

generated by (ω3p, ω3p, ω3p), whereas the other three are isomorphic to each other, being

singular quotients (ω3p, ω3p, ω
−3
3p ). In fact these latter quotients are similar to the S5/Z2

quotient, mentioned above.

Note that when p is even the orbifold action contains elements that act diagonally

along the Hopf U(1). To see this, note that the condition for an element to act along the

Hopf diagonal is

l

3p
∼= − l

p
mod 1 (5.19)
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which implies

4l = 3pn (5.20)

where, without loss of generality, we take 0 < l < 3p so that n ∈ {1, 2, 3}. Clearly for p

odd this has no solution. However, for p = 2r even we may in general take l = 3r, n = 2,

which leads to the diagonal Z2 action on C
4

(z1, z2, z3, z4) → −(z1, z2, z3, z4) . (5.21)

This is precisely the k = 2 orbifold action considered by ABJM [4]. On the other hand,

if p is divisible by 4, so p = 4m, we may take l = 3m, n = 1, leading to the diagonal Z4

action generated by

(z1, z2, z3, z4) → ω4 · (z1, z2, z3, z4) . (5.22)

This is the k = 4 orbifold action considered by ABJM. In these latter two cases we may

view the orbifold instead as (C4/Z2)/Z3r and (C4/Z4)/Z3m, respectively, where the first

quotient is the ABJM quotient.

Notice that in the discussion above one has to be careful about which complex structure

one is using on C
4. Recall that the Zk action considered by ABJM is actually a discrete

subgroup of the baryonic U(1)B , acting as follows on the bifundamental fields

Ai → eiαAi , Bi → e−iαBi . (5.23)

Setting α = 2π/k, we see that Zk ⊂ U(1)B . Thus, on the natural GLSM coordinates14 zi
on C

4, the ABJM Zk quotient acts as

(z1, z2, z3, z4) → (ei2π/kz1, e
i2π/kz2, e

−i2π/kz3, e
−i2π/kz4) . (5.24)

The coordinates on C
4 used in [4] are related to the above coordinates by a non-holomorphic

change of variable: z′1 = z1, z
′
2 = z2, z

′
3 = z̄3, z

′
4 = z̄4. Notice that for k = 2 (and only

for this value) the action on zi and z′i is obviously the same. To construct N = 2 orbifold

quivers of the ABJM theory, it seems more appropriate to use the orbifold action on the zi
coordinates above. However, it is not clear that the standard rules ([34]) for constructing

four-dimensional orbifold quivers will apply.

6. Discussion

In this paper we have studied in detail two of the families of Sasaki-Einstein seven-manifolds

constructed in [12]. These are the simplest examples, with the largest isometry groups.

In particular, we have given gauged linear sigma model descriptions of these manifolds,

discussed their topology, and also described relevant supersymmetric submanifolds and

their volumes. As is the case for the five-dimensional Y p,q manifolds [18], we have shown

14The GLSM description gives the conifold as a C
4// U(1)B quotient.
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that these families interpolate between certain orbifolds of homogeneous Sasaki-Einstein

manifolds. In particular, the family Y p,k(CP 2) has a limit Y p,3p(CP 2) = C
4/Z3p, and we

discussed this orbifold in some detail. The geometric results of this paper should be a

useful first step in constructing candidate AdS4/CFT3 dual superconformal field theories.

We conclude by discussing some of the issues involved in pursuing this programme.

As a general comment, note that a key ingredient in AdS5/CFT4 duality involv-

ing Sasaki-Einstein five-manifolds is a-maximisation [35]. Among the consequences of

a-maximisation is the fact that the central charges, as well as the R-charges of a given

SCFT, are necessarily algebraic numbers, i.e. roots of polynomials with integer coefficients.

It was proven in [36] that the volumes, and volumes of supersymmetric submanifolds, of

Sasaki-Einstein manifolds are always algebraic numbers, in any dimension. For the ex-

amples discussed in this paper we obtain cubic irrational numbers. This strongly suggests

that there should be some type of analogue of a-maximisation for three-dimensional confor-

mal field theories with N = 2 supersymmetry. Note that the field theoretic τ -minimisation

of [37] applies to such theories, although it is currently not known how to use this to obtain

exact field theory results.

The Calabi-Yau cones C(Y p,k
7 ) we have discussed admit explicit Calabi-Yau resolutions,

or partial resolutions where there are residual orbifold singularities [26]. This fact might be

useful for obtaining further insight into these theories [38, 39]. Note that such resolutions

would also allow the BPS “mesonic” spectrum to be read off [40] from the index-character

of [36]. Indeed, such generating functions have already been computed for the handful of

currently-known orbifold duals in [41].

Since the geometries are toric, there will also be a dual brane web description. In this

case the Calabi-Yau cones may be described as Special Lagrangian T
3 × R fibrations over

R
4, with certain types of degeneration of the fibres encoded combinatorially in terms of

toric data. Reduction and two T-dualities leads to a dual description in terms of prq-4-

branes in type IIA [42]. The configuration of these 4-branes may be read off from the toric

data we presented earlier. This leads to a three-dimensional “web diagram”, describing

the locus of the prq-4-branes. The problem of finding the dual gauge theory then becomes

translated into a problem of understanding the effective theory of such webs of 4-branes.

Again, the toric nature of these manifolds also implies that one can write down associated

M-theory crystals [43]. These are analogues of dimer configurations, although it is not clear

to us how these are related to the recent Chern-Simons gauge theory construction of [4],

and various follow-up papers.

A possible avenue of research is to try to construct a Chern-Simons-matter theory that

is dual to the orbifold C
4/Z3p. Similar orbifold theories have recently been constructed and

discussed in [22 – 25]. This should be, in some sense, a limiting theory of the theories dual to

Y p,k(CP 2). The aforementioned orbifold constructions simply apply the standard methods

to construct the orbifold theories. However, the reasoning for this is currently obscure.

In particular, the ABJM orbifold S7/Zk is not simply a standard orbifold projection of

the theory for k = 1 — instead one changes the Chern-Simons level from k = 1 to k.

A systematic understanding of how to construct orbifold theories is currently lacking.

However, note that a necessary condition for a candidate theory to be dual to a particular
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AdS4×Y7 background is that its vacuum moduli space contains theNth symmetric product

of C(Y7) as a subvariety. This is because the latter is the moduli space of N M2-branes

that are transverse to the Calabi-Yau singularity C(Y7). This problem, for general classes

of d = 3, N = 2 Chern-Simons quiver gauge theories, will be addressed in [44].

Acknowledgments

D. M. acknowledges support from NSF grant PHY-0503584. J. F. S. is funded by a Royal

Society University Research Fellowship.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[2] J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020

[hep-th/0611108];

A. Gustavsson, Algebraic structures on parallel M2-branes, arXiv:0709.1260;

J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes,

Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955]; Comments on multiple M2-branes,

JHEP 02 (2008) 105 [arXiv:0712.3738].

[3] M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M2-branes,

JHEP 05 (2008) 105 [arXiv:0803.3803];

N. Lambert and D. Tong, Membranes on an orbifold, Phys. Rev. Lett. 101 (2008) 041602

[arXiv:0804.1114];

J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M2-branes on M-folds,

JHEP 05 (2008) 038 [arXiv:0804.1256].

[4] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, arXiv:0806.1218.

[5] A. Kehagias, New type IIB vacua and their F-theory interpretation, Phys. Lett. B 435 (1998)

337 [hep-th/9805131].

[6] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau

singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080].

[7] B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical

singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014].

[8] D.R. Morrison and M.R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3

(1999) 1 [hep-th/9810201].

[9] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5 solutions of

M-theory, Class. and Quant. Grav. 21 (2004) 4335 [hep-th/0402153].

[10] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S2 × S3,

Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002].

[11] C.P. Boyer and K. Galicki, 3-Sasakian manifolds, Surveys Diff. Geom. 7 (1999) 123

[hep-th/9810250].

– 23 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2C38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C045020
http://arxiv.org/abs/hep-th/0611108
http://arxiv.org/abs/0709.1260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C065008
http://arxiv.org/abs/0711.0955
http://jhep.sissa.it/stdsearch?paper=02%282008%29105
http://arxiv.org/abs/0712.3738
http://jhep.sissa.it/stdsearch?paper=05%282008%29105
http://arxiv.org/abs/0803.3803
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C101%2C041602
http://arxiv.org/abs/0804.1114
http://jhep.sissa.it/stdsearch?paper=05%282008%29038
http://arxiv.org/abs/0804.1256
http://arxiv.org/abs/0806.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB435%2C337
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB435%2C337
http://arxiv.org/abs/hep-th/9805131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB536%2C199
http://arxiv.org/abs/hep-th/9807080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C1249
http://arxiv.org/abs/hep-th/9808014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1
http://arxiv.org/abs/hep-th/9810201
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2C4335
http://arxiv.org/abs/hep-th/0402153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C8%2C711
http://arxiv.org/abs/hep-th/0403002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00078%2C7%2C123
http://arxiv.org/abs/hep-th/9810250


J
H
E
P
1
1
(
2
0
0
8
)
0
1
6

[12] J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A new infinite class of

Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2006) 987 [hep-th/0403038].

[13] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein supergravity, Phys. Rept. 130 (1986)

1.

[14] K. Oh and R. Tatar, Three dimensional SCFT from M2 branes at conifold singularities,

JHEP 02 (1999) 025 [hep-th/9810244].

[15] D. Fabbri et al., 3D superconformal theories from Sasakian seven-manifolds: new nontrivial

evidences for AdS4/CFT3, Nucl. Phys. B 577 (2000) 547 [hep-th/9907219].

[16] A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, M-theory on the Stiefel manifold and

3D conformal field theories, JHEP 03 (2000) 011 [hep-th/9912107].

[17] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS backgrounds in

string and M-theory, hep-th/0411194;
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